Construction and application of a protein and genetic interaction network (yeast interactome)

Gregory R. Stuart¹, William C. Copeland^{1,*} and Micheline K. Strand^{1,2}

¹Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences and ²Life Sciences Division, U.S. Army Research Office, Research Triangle Park, NC 27709, USA

Received October 28, 2008; Revised February 18, 2009; Accepted February 19, 2009

ABSTRACT

Cytoscape is a bioinformatic data analysis and visualization platform that is well-suited to the analysis of gene expression data. To facilitate the analysis of yeast microarray data using Cytoscape, we constructed an interaction network (interactome) usina the curated interaction data available from the Saccharomyces Genome Database (www. yeastgenome.org) and the database of yeast transcription factors at YEASTRACT (www.yeastract. com). These data were formatted and imported into Cytoscape using semi-automated methods, including Linux-based scripts, that simplified the process while minimizing the introduction of processing errors. The methods described for the construction of this yeast interactome are generally applicable to the construction of any interactome. Using Cytoscape, we illustrate the use of this interactome through the analysis of expression data from a recent yeast diauxic shift experiment. We also report and briefly describe the complex associations among transcription factors that result in the regulation of thousands of genes through coordinated changes in expression of dozens of transcription factors. These cells are thus able to sensitively regulate cellular metabolism in response to changes in genetic or environmental conditions through relatively small changes in the expression of large numbers of genes, affecting the entire yeast metabolome.

INTRODUCTION

Cytoscape (www.cytoscape.org) is an open source bioinformatics software platform originally intended for, but not limited to, the analysis of molecular interaction data associated with changes in gene expression and other data (1). Cytoscape's core distribution provides a basic set of features for data integration and visualization, with additional features available as plugins. Additionally, the visual display properties are highly customizable, including the use of annotation files that allow additional information to be visually represented in a more meaningful manner (Figure 1).

Several years ago, we determined that disruption of the POS5 gene in Saccharomyces cerevisiae results in a 50-fold increase in the reversion of a frameshift deletion in mtDNA and demonstrated that POS5 encodes a NAD(H) kinase, the sole source of NADP $^+$ and NADPH in the mitochondrion of S. cerevisiae (2). In a recent follow-up study, we used a yeast microarray to evaluate the changes in gene expression in S. cerevisiae due to genetic and environmental factors associated with oxidative stress (3). To facilitate those analyses, we created a high-quality yeast interaction network (interactome) suitable for use in Cytoscape, illustrated through the analysis of data from a recent diauxic shift experiment in wildtype yeast cells that serves as an in-house reference source of yeast expression data. Analyses of these data additionally revealed that transcription factors and their target genes form highly complex, interconnected networks affecting all aspects of cellular metabolism in S. cerevisiae.

MATERIALS AND METHODS

Strain

Saccharomyces cerevisiae strain YPH925 (ade2-101 cyh2his3- $\Delta 200 kar1-\Delta 15 leu2-\Delta 1 lys2-801 trp1-\Delta 63 ura3-52$) (4) was employed for this work, and for convenience is referred to as being 'wild-type'.

Bioinformatic platforms

Microarray fluorescence data (3) were imported into Rosetta Resolver (Rosetta Biosoftware, Seattle, WA, USA) for the estimation of random error by application of an error model that calculated the confidence limits (*P*-values) for the expression values. The Agilent GeneSpring Analysis Platform (Agilent Technologies, Palo Alto, CA, USA) was used for LOWESS data normalization. To aid the visualization and the analysis of the

*To whom correspondence should be addressed. Tel: +1 919 541 4792; Fax: +1 919 541 7613; Email: copelan1@niehs.nih.gov

Published by Oxford University Press 2009

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

В

Figure 1. Selected illustration from the yeast interactome, using a screen capture from a Cytoscape 'session' (Cytoscape sessions can be saved, preserving the work for future use). (A) This panel illustrates part of the subnetwork identified by the jActiveModules plugin, as described in the text and summarized in Table 1. The main, upper right frame displays a close-up view of some of the genes present in this subnetwork, while the lower left frame shows an overview of the entire subnetwork, with the part shown in the main frame indicated by the shaded region. The upper left frame contains a list of the subnetworks arising from various analyses within Cytoscape, including the numbers of nodes and edges, and the number of these currently selected, that are highlighted in yellow in the displayed subnetworks. In this example, genes directly associated with (i.e. regulated by) transcription factor Rpn4 are selected and shown in yellow (these selections are made from the Select menu). The data panel at the lower right of the image displays information associated with each of these nodes, imported from various user-defined annotation files, including (as shown) common gene names, the expression values, genes associated with the mitochondrion and the response to stress, descriptions of the genes from SGD and genes encoding transcription factors. In this example, transcription factor Hal9 is a mitochondrial stress response gene that was up-regulated 1.7-fold in

expression data, a *S. cerevisiae* protein–protein and protein–DNA interactome was constructed as described in the following section. The microarray expression data were then mapped onto this interactome using Cytoscape.

Genes associated with the highest scoring subnetworks were identified using the Cytoscape jActiveModules plugin. Active Modules are connected subnetworks within the interaction network whose genes show significant coordinated changes in mRNA expression over particular experimental conditions (1). The algorithm iteratively reduces network complexity by pinpointing regions whose states are perturbed by the conditions of interest, while removing false-positive interactions and interactions not involved in the perturbation response. Genes present in each of the five top-scoring networks in wild-type cells shifted to growth in glycerol were identified using the jActiveModules algorithm. Since many of the genes in each of these five subnetworks (186-187 genes each) were present in two or more of these subnetworks. for simplicity these groups of genes were combined, resulting in a single jActiveModules gene list.

Construction of a high-quality yeast interactome

The interactome described in this article was constructed in April 2008 using semi-automated methods to format the interaction data from the Saccharomyces Genome Database (SGD: www.yeastgenome.org) and the transcription factor data from YEASTRACT (5) (yeastract.com) into a form suitable for use with Cytoscape, as described in detail in the Supplementary Material (Supplementary file: Constructing a Yeast Interactome). Briefly, the interactions.tab file downloaded from SGD was processed by deleting unnecessary text (e.g. 'Bait' and 'Hit') and columns and reclassifying the various interaction types as either 'pi' (physical interactions, e.g. protein-protein) or 'gi' (genetic interactions, e.g. synthetic lethality). This step dramatically simplified the visual display of the interaction types (edges) between the various nodes (genes; proteins), while allowing us to assign 'weights' to each of the edges, reflecting the numbers of interactions documented between nodes. These interaction weights provided a measure of the number of times that two genes were found to interact with one another in a specific manner, from among the data curated at SGD from various sources.

Next, an interaction file containing a list of *S. cerevisiae* transcription factors and their documented target genes, RegulationTwoColumnTable_Documented_2008410_

1839_1043605408.tsv, was downloaded from YEASTRACT. In preparation for use in Cytoscape, the yeast common gene names provided by YEASTRACT

were converted to their systematic names, as found at SGD (e.g. POS5 was converted to YPL188W). Next, all letters in the gene names appearing in lowercase were converted to uppercase, again a requirement for Cytoscape. This list of genes was then processed through the 'Batch Download' tool at SGD to identify 'rogue' genes (e.g. MAL63 is not present in the in the systematic sequence of the SGD reference strain S288c; or, two or more genes sharing the same common name). Next, a column of interactions weights (all equal to 1) was appended to the transcription factor interaction file, for compatibility with the weighted SGD interaction data.

The SGD and YEASTRACT plain-text, tab-delimited interaction files were then concatenated as a single file (Supplementary file: pp_gi_tf.tab) and imported into Cytoscape using the import tool located under the File menu. At this time various annotation files, including gene-expression data and lists of stress response and mitochondrial genes, were also imported into Cytoscape. Lastly, the visual display properties of the nodes and edges were defined using the Cytoscape VizMapper tool.

The computer used for this work employed an Intel Pentium 4 CPU operating at 3.0 GHz, 1.5 GB of RAM, and the Microsoft Windows XP Professional Version 2002 Service Pack 2 operating system. To facilitate the steps summarized above associated with manipulating and formatting the raw interaction data files, simple perl and awk scripts were employed using Cygwin (http://www.cygwin. com/), a Linux-like environment for Windows [GNU bash shell, version 3.2.33(18)-release (i686-pc-cygwin]. On Macintosh and Linux-based operating systems, the awk and perl programming languages can be implemented directly in a command shell. Cytoscape is available for any major computer platform, including the Windows, Macintosh and Linux operating systems. All of the tools and source data described in this article are freely available from the indicated sources, while the yeast interactome described in this article is provided Supplementary Material (Supplementary as file: pp gi tf.cys) a Cytoscape session file with 6,188 nodes (genes/proteins) and 109,179 edges (interactions), that also includes the sample microarray expression data from our yeast diauxic shift experiment, plus the VizMapper visual display settings. For use with older versions of Cytoscape (or for use with other platforms), data files separately containing the diauxic shift expression data, the interactome (Supplemental file: pp gi tf.tab), node annotation files (lists of genes associated with the mitochondrion, the response to stress or transcription factors; common gene names; SGD gene descriptions), as well as the VizMapper visual display properties

wild-type diauxic-shifted cells. Also illustrated is a a box containing the SGD gene description, that automatically pops up when the cursor is placed on top of a gene description, here showing the complete SGD gene description for Hal9. Mitochondrial-associated nodes are shown as rectangles, and nodes associated with the response to stress are drawn with emphasized, blue borders with the gene names also displayed in blue text. Nodenode interactions (edges) are color-coded with blue edges indicating protein-protein interactions, gold edges indicating transcription factors with the arrow pointing from the transcription factor toward the regulated gene, and broken red edges indicating genetic (rather than physical) interactions, e.g. synthetic lethality—the loss of viability when both alleles are inactivated. Nodes in which the blue edge loops back on itself indicate self-regulated genes. The thickness of the edges represent weights, i.e. heavier edges indicate more (multiple) interactions, of the indicated type, between two nodes, as described in the Materials and Methods section. (**B**) The 'Gradient Editor for Node Color' editor from the Cytoscape VizMapper tool. In each of the Cytoscape displays in this article, up-regulated genes (nodes) are colored red, while down-regulated genes are colored green, with the extent of shading proportional to the level of expression as indicated in an expanded view in the image in the lower part of this panel.

Figure 2. A schematic showing the 95 genes present among the five top-scoring Cytoscape jActiveModules subnetworks from YPG-shifted cells with changes in expression \geq 5-fold, plus the associated transcription factors, displayed using Cytoscape, and also shown at lower magnification in the lower left frame in Figure 1A. For convenience, these genes are also summarized in Table 1. For a description of the visual display elements (node colors, etc.), please refer to the Figure 1 legend.

(vizmap.props) file, and lastly an Excel look-up table that can be used to convert common yeast names to their systematic gene name are included in the supplementary interactome files: (Supplementary interactome files: Mitochondrial_Gene_Names.txt; Stress_Response_ Genes.txt; Transcription_Factor_Gene_List.txt; Common_Gene_Names.txt; SGD_Gene_Descriptions.txt; vizmap.props; Common_to_Systematic_Name_Lookup_ Table.xls; WT_YPG_Shift_Expression_Data.pvals).

RESULTS

Changes in expression occurring during a glycerol-induced diauxic shift

In a related study (3), we examined and compared changes in gene expression in cells containing a deletion of the *POS5* gene using Cytoscape (1), a bioinformatic data analysis and visualization tool. Here, we describe the construction of the robust yeast interactome used in those analyses. To better describe the application and versatility of this interactome, we describe the results from a parallel study from our laboratory that examined gene expression in a wild-type yeast strain grown to the midlogarithmic phase of growth, then shifted to growth in glycerol for 2 h.

Similar to previous reports (6–12), we observed profound changes in gene expression following the switch from a fermentable carbon source (glucose) to the nonfermentable carbon source (glycerol), as summarized in Figure 2 and Table 1. Specifically, 3777 of the 6256 genes on the Agilent yeast chip (60.4%) were found to be differentially expressed at a significance level of $<10^{-4}$ (at this level of significance, ~0.6 false-positives were expected). To reduce this list of genes to a more meaningful and manageable dataset, we used the Cytoscape jActiveModules plugin to identify genes showing coordinated, significant changes in expression.

Table 1.	Expression	levels of	genes in	n glycero	l-shifted	wild-type	cells	identified	by t	the	Cytoscape	jActiveN	Iodules,	with	expression	values	\geq 5-fold
up- or d	lown-regulate	d, plus t	heir ass	ociated ti	ranscript	ion factors	s										

Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YIL160C	POT1	74.67	3-ketoacyl-CoA thiolase; cleaves 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA during beta- oxidation of fatty acids
YPL276W YKL217W	FDH2 JEN1	62.63 57.30	NAD(+)-dependent formate dehydrogenase; may protect cells from exogenous formate Lactate transporter (uptake of lactate, pyruvate); derepressed by Cat8p under nonfermenta-
YMR107W	SPG4	52.99	tive growth conditions Required for survival at high temperature during stationary phase; not required for growth
VII 057C	VII 057C	50.37	on noniermentable carbon sources Hypothetical protein
YGR236C	SPG1	38.51	Required for survival at high temperature during stationary phase; not required for growth
YKR097W	PCK1	36.18	on nonfermentable carbon sources Phosphoenolpyruvate carboxykinase; gluconeogenesis; repressed by glucose; regulated by
VKI 197C	VKI 197C	26.12	Mcmlp and Cat8p
YGL205W	POX1	24.28	Future protein of unknown function, detectable in highly purhed intechnolidia Fatty-acyl coenzyme A oxidase, involved in the fatty acid beta-oxidation pathway; localized to the peroxisomal matrix
YDR536W	STL1	21.12	Plasma membrane glycerol proton symporter; subject to glucose-induced inactivation; tran- siently induced by osmotic shock
YML054C	CYB2	19.79	Cytochrome b2; mitochondrial intermembrane space; required for lactate utilization; repressed by glucose
YMR280C	CAT8	17.69	Transcriptional activator; derepresses a variety of genes under non-fermentative growth conditions, active after diauxic shift
YGR043C	NQM1	16.42	Putative protein of unknown function; transcription is repressed by Mot1p and induced during diauxic shift
YBR116C	YBR116C	14.90	Hypothetical protein
YHR160C	PEX18	14.68	Part of a two-member peroxin family (Pex18p and Pex21p)
YMR1/4C	PA13	13.67	Cytoplasmic proteinase A inhibitor, dependent on Pbs2p and Hog1p protein kinases for osmotic induction
YMR118C	YMR118C	13.42	Protein of unknown function with similarity to succinate dehydrogenase cytochrome b sub- unit: nonessential gene
YNL195C	YNL195C	13.34	Hypothetical protein
YLR327C	TMA10	12.62	Protein of unknown function that associates with ribosomes
YLR178C	TFS1	10.10	Carboxypeptidase Y inhibitor; phosphatidylethanolamine-binding protein involved in protein kinase A signaling pathway
YDR380W	ARO10	9.62	Phenylpyruvate decarboxylase (decarboxylation of phenylpyruvate to phenylacetaldehyde);
YJL217W	YJL217W	9.59	Cytoplasmic protein of unknown function; induced by copper sensing transcription factor Macha dwing copper deficiency
YEL020C	YEL020C	9.37	Hypothetical protein with low sequence identity to Pdc1p
YLR284C	ECI1	9.04	Peroxisomal delta3,delta2-enoyl-CoA isomerase; essential for the beta-oxidation of unsatu- rated fatty acids oleate-induced
YMR322C	SNO4	8.94	Possible chaperone and cysteine protease; similar to Hsp31p, Hsp32p, and Hsp33p; possible role in pyridoxine metabolism
YGR201C	YGR201C	8.83	Putative protein of unknown function
YPL201C	YIG1	8.60	Protein that interacts with glycerol 3-phosphatase and plays a role in anaerobic glycerol production
YOL152W	FRE7	8.60	Putative ferric reductase with similarity to Fre2p; expression induced by low copper levels
YJR008W	YJR008W	8.27	Putative protein of unknown function; expression induced by mild heat-stress on a nonfermentable carbon source.
YGL156W	AMS1	8.05	Vacuolar alpha mannosidase, involved in free oligosaccharide (fOS) degradation
YPL280W	HSP32	7.95	Possible chaperone and cysteine protease; similar to Hsp31p, Hsp33p and Sno4p
YMR206W	YMR206W	7.39	Putative protein of unknown function; YMR206W is not an essential gene
YGR088W	CTT1	7.18	Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide
YGR243W	FMP43	7.02	The authentic, nontagged protein was localized to mitochondria
YKL093W	MBRI	6.70	hydrogenergies and hap4 defects
VDI 054W		6.54	physiological stresses
VGR248W	SOL4	6.47	6-nhosnhogluconolactonase with similarity to Sol3n
YEL033W	YEL033W	6.47	Predicted to have metabolic role based on analysis of gene networks
YLR162W	YLR162W	6.38	Putative protein of unknown function; overexpression confers resistance to the antimicrobial peptide MiAMP1
YMR175W	SIP18	6.33	Protein of unknown function whose expression is induced by osmotic stress
YOR173W	DCS2	6.20	Non-essential protein; regulated by Msn2p, Msn4p; accumulates under glucose limitation,
YFL054C	YFL054C	6.06	Putative channel-like protein; similar to Fps1p; mediates passive diffusion of glycerol in the presence of ethanol

Table	1.	Continued

Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YOR285W YNR001C	YOR285W CIT1	5.98 5.93	Protein of unknown function, localized to the mitochondrial outer membrane Citrate synthase (condensation of acetyl coenzyme A and oxaloacetate to citrate); rate- limiting TCA cycle enzyme
YNR034W-A YMR110C	YNR034W-A HFD1	5.91 5.78	Hypothetical protein Putative fatty aldehyde dehydrogenase, located in the mitochondrial outer membrane and
VPR002W	PDH1	5 55	also in lipid particles Mitochondrial protein that participates in respiration, induced by diauxic shift
YIL055C	YIL055C	5.53	Hypothetical protein
YPR151C	SUE1	5.45	Mitochondrial protein required for degradation of unstable forms of cytochrome c
YNL305C	YNL305C	5.38	Hypothetical protein
YKL163W	PIR3	5.35	Cell wall protein required for cell wall stability; expression is regulated by cell cycle and the cell integrity pathway
YML089C	YML089C	5.34	Hypothetical protein
YER03/W	PHM8	5.27	Protein of unknown function, expression is induced by low phosphate levels and by inacti- vation of Pho85p
YKLU66W	YKLU66W	5.26	Dubious open reading frame, unlikely to encode a protein; not conserved in closely related Saccharomyces species;
YLK149C	ILK149C	5.20	One of two isozymes that catalyze the fifth enzymatic step in the de poyo biosynthesis of
YIL 087C	VII 087C	5.15	pyrimidines Hypothetical protein
YKL150W	MCR1	5.04	Mitochondrial NADH-cytochrome b5 reductase, involved in ergosterol biosynthesis
YNL274C	YNL274C	5.03	Putative hydroxyisocaproate dehydrogenase
YER121W	YER121W	5.01	Hypothetical protein
YOR382W	FIT2	5.01	Cell wall mannoprotein involved in the retention of siderophore-iron in the cell wall
YPL281C	ERR2	5.01	Protein of unknown function, has similarity to enolases
YHR006W	STP2	1.90	Transcription factor that activates transcription of amino acid permease genes
YDR423C	CADI	1.80	Transcriptional activator involved in stress responses, iron metabolism, drug resistance and protein stabilization
YML007W	YAP1	1.74	Transcription factor required for oxidative stress tolerance; mediates pleiotropic drug and metal resistance
YOL089C	HAL9	1.74	Putative transcription factor; salt tolerance through increased expression of the ENAI (Na+/ Li+ extrusion pump) gene
YDL020C	RPN4	1./3	Transcription factor that stimulates proteasome gene expression; regulated by various stress responses
YHK124W	ND180	1.69	ulation genes
YPR199C	AKKI	1.50	compounds
YNLIU3W VMP016C	ME14	1.21	Paraletory relation the gradie AMP (aAMP) dependent protein kinese (PKA) signal trans
YML076C	WAD1	-1.19	duction pathway Transprintion factor: induces transprintion of PDP12 (acid transporter) and EUN24 (putative
VGL200W	MIG2	-1.22	ammonia transporter) and rouge along with Might of SUC2 (invertige) and rouge by high
VHP1///C	DCD1	-1.81	levels of glucose Decoupyriding monophosphate (dCMP) deaminase required for dCTP and dTTP synthesis
YLR048W	RPS0B	-5.06	Protein component of the small (40S) ribosomal subunit; required for maturation of 18S $r_{\rm E}N_{\rm A}$
YDR345C	HXT3	-5.31	Low affinity glucose transporter; expression is induced in low or high glucose conditions
YMR305C	SCW10	-5.34	Cell wall protein with similarity to glucanases; may play a role in conjugation during mating
YMR321C	YMR321C	-5.47	Hypothetical protein
YPL079W	RPL21B	-5.48	Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl21Ap
YFL056C	AAD6	-5.55	Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response
YLR061W	RPL22A	-6.02	Protein component of the large (60S) ribosomal subunit, has similarity to Rpl22Bp
YML026C	RPS18B	-6.03	Protein component of the small (40S) ribosomal subunit; nearly identical to Rps18Ap
YELU/IW	DLD3	-0.48	D-factate denyarogenase; retrograde regulion (genes sumulated by damage to mitochondria)
1 ANU/3 W		-0.00	close to the telomere
r FLU5/C	AAD16	-0./4	rulauve aryi-aiconoi denydrogenase; mutational analysis has not yet revealed a physiological role
YML116W YMR318C	ATRI ADH6	-7.41 -7.67	Multidrug efflux pump; required for resistance to aminotriazole and 4-nitroquinoline-N-oxide NADPH-dependent cinnamyl alcohol dehydrogenase; possible role in fusel alcohol synthesis
YLR460C	YLR460C	-8.32	by an analysis tolerance Hypothetical protein
			(continued)

Table 1. Continued

Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YER055C	HIS1	-8.99	ATP phosphoribosyltransferase, a hexameric enzyme, catalyzes the first step in histidine biosynthesis
YDR399W	HPT1	-9.53	Dimeric hypoxanthine-guanine phosphoribosyltransferase, catalyzes the formation of both IMP and GMP
YMR177W	MMT1	-10.16	Putative metal transporter involved in mitochondrial iron accumulation; closely related to Mmt2p
YKL071W	YKL071W	-14.01	Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein loca- lizes to the cytoplasm
YAR075W	YAR075W	-19.31	Nonfunctional protein with homology IMP dehydrogenase
YGR138C	TPO2	-19.36	Polyamine transport protein specific for spermine; localizes to the plasma membrane; regulated by Haa1p

^aEach of these genes were significantly differentially expressed with a *P*-value of $\leq 10^{-4}$, determined using Rosetta Resolver (see Materials and Methods section).

The five top-scoring Active Modules subnetworks (jAM5-1 through jAM5-5) each contained 186 or 187 genes, as indicated in Figure 1. Since these subnetworks partially overlapped, these genes were combined into a single list which was further simplified by selecting genes that were greater than 5-fold up- or down-regulated, plus their associated transcription factors (Table 1).

Examining these genes, we noted the up-regulation of genes associated with mitochondrial function, gluconeogenesis, the TCA cycle, the β -oxidation of fatty acids, transport (including the uptake of amino acids), cell wall stability, copper and iron utilization (both required as prosthetic groups in the cytochromes in the electron transport chain) and glycerol and lactate utilization. Conversely, we observed down-regulation of genes associated with the accumulation of iron in the mitochondrion (required for heme and cytochrome biosyntheses), ribosomal subunit biosynthesis, and cellular growth—a response to glucose starvation.

The increased mitochondrial activity associated with oxidative phosphorylation, required for respiratory growth on nonfermentable carbon sources including ethanol and glycerol, summarized by Maris et al. (8), is accompanied by increased production of reactive oxygen species. In response, we found that numerous genes associated with the response to oxidative stress were up-regulated in our diauxic-shifted cells (Figure 3; Table 2), most notably CTA1 (catalase A, present in the peroxisomal and mitochondrial matrices; 40.2-fold up-regulated), HSP12 (plasma membrane heat-shock protein;18.4-fold), CTT1 (cytosolic catalase T; 7.2-fold), PRX1 (mitochondrial peroxiredoxin; 5.5-fold), MCR1 (mitochondrial NADHcytochrome b5 reductase; 5.0-fold) and GPX1 (phospholipid hydroperoxide glutathione peroxidase; 4.6-fold). The superoxide dismutases encoded by SOD1 (cytosol; mitochondrial intermembrane space) and SOD2 (mitochondrial matrix) were modestly up-regulated (2.1 and 1.9-fold, respectively), indicating that the burden of the response to increased reactive oxygen species in this strain under these conditions is shared by the other antioxidant defense mechanisms (Cta1, Ctt1, etc.). Interestingly, many genes associated with the response to

oxidative stress were down-regulated (Figure 3; Table 2), most notably *GPX2* (cytoplasmic phospholipid hydroperoxide glutathione peroxidase; 5.7-fold), *TRR1* (cytoplasmic thioredoxin reductase; 4.0-fold) and *GSH1* (glutathione biosynthesis; 3.0-fold).

The numbers of genes differentially expressed in these cells, the modest changes in expression of *SOD1* and *SOD2*, and the down-regulation of oxidative stress-related genes *GPX2*, *TRR1* and *GSH1* suggests that the regulation of gene expression in these cells is rather complex. Examining our yeast interactome, it is readily apparent that the regulation of gene expression in yeast is extraordinarily complex, with most genes simultaneously regulated by two or more transcription factors, as indicated in Figures 1–3. Additionally, the 168 transcription factors downloaded from YEASTRACT interact among one another in an extraordinarily complex way while directly regulating the expression of at least 5902 target genes (our yeast interactome: data not shown).

DISCUSSION

Our laboratory has a long-standing interest in exploring mitochondrial function and maintenance, including the stability and replication of the mitochondrial genome, and mutations and naturally occurring nucleotide polymorphisms associated with mitochondrial disease (13–15). Among the tools that we employ for these studies is the model organism, *S. cerevisiae* (2,3,13,16).

Energy demands in the facultative anaerobe *S. cerevisiae* are met under different physiological states when cells are grown on fermentable carbon sources such as glucose versus non-fermentable carbon sources such as ethanol or glycerol (8,17,18). Fermentation and glycolysis supply the cell with energy through the breakdown of glucose and other simple fermentable sugars; however, when the glucose concentration drops below $\sim 0.2\%$, the cells stop growing for a few hours as they undergo the diauxic shift, accompanied by transcriptional and translational changes including the mitochondrial biosynthesis. The cells then resume slower growth for a few generations by oxidative phosphorylation using the ethanol, glycerol and

Figure 3. A schematic displaying genes associated with the response to oxidative stress, in cells shifted to growth on glycerol. For clarity, interactions associated with transcription factor Msn4—that virtually mirror those from Msn2—were removed from this figure. For convenience, these genes are also summarized in Table.

Table 2. Expression levels of genes associated with the response to oxidative stress in cells shifted to growth on glycerol

Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YDR256C	CTA1	40.22	Catalase A, breaks down hydrogen peroxide in the peroxisome formed during fatty acid beta- oxidation
YFL014W	HSP12	18.36	Plasma membrane protein; induced by heat shock, oxidative stress, glucose depletion
YGR088W	CTT1	7.18	Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide
YBL064C	PRX1	5.47	Mitochondrial peroxiredoxin; induced during respiratory growth and under conditions of oxidative stress
YKL150W	MCR1	5.04	Mitochondrial NADH-cytochrome b5 reductase, involved in ergosterol biosynthesis
YKL026C	GPX1	4.57	Phospholipid glutathione peroxidase; induced by glucose starvation; protection from oxida- tive stress
YLL039C	UBI4	4.50	Ubiquitin; marks proteins for selective degradation; essential for the cellular stress response
YNL036W	NCE103	3.62	Carbonic anhydrase; poorly transcribed under aerobic conditions
YCL035C	GRX1	3.38	Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage
YMR250W	GAD1	3.11	Glutamate decarboxylase (glutamate to gamma-aminobutyric acid); response to oxidative stress
YPL196W	OXR1	2.97	Protein of unknown function required for resistance to oxidative damage
YOR338W	YOR338W	2.94	Hypothetical protein
YKR066C	CCP1	2.89	Mitochondrial cytochrome-c peroxidase; degrades reactive oxygen species; response to oxidative stress
YHR140W	YHR140W	2.71	Putative integral membrane protein of unknown function

Table 2. Continued

Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YDR453C	TSA2	2.61	Inducible cytoplasmic thioredoxin peroxidase; removal of reactive oxygen, nitrogen and
YIR037W	HYR1	2.43	sulfur species Thiol peroxidase; senses intracellular hydroperoxide levels, transduces a redox signal to Yapla
YCR083W YBR037C	TRX3 SCO1	2.24 2.20	Mitochondrial thioredoxin; maintains cellular redox homeostasis with Trr2p and Glr1p Mitochondrial inner membrane copper-binding protein required for cyt c oxidase activity and respiration
YCL033C YDR513W	MSRB GRX2	2.19 2.18	Putative protein-methionine-R-oxide reductase; involved in response to oxidative stress Cytoplasmic glutaredoxin; involved in maintaining redox state of target proteins; induced by
YLL056C	YLL056C	2.11	Success Putative protein of unknown function; activated along with genes involved in pleiotropic drug
YJR104C YKL086W	SOD1 SRX1	2.06 2.02	Copper, Zinc-containing superoxide dismutase Sulfiredoxin, contributes to oxidative stress resistance by reducing peroxiredoxins Tsa1p and
YBR006W	UGA2	1.95	Ahplp Succinate semialdehyde dehydrogenase; utilization of gamma-aminobutyrate as a nitrogen
YHR008C YNL241C	SOD2 ZWF1	1.93 1.75	Manganese-containing superoxide dismutase; protects cells against oxygen toxicity Glucose-6-phosphate dehydrogenase (pentose phosphate pathway); adaption to oxidative
YML007W	YAP1	1.74	stress Transcription factor required for oxidative stress tolerance; mediates pleiotropic drug, metal
YHR106W	TRR2	1.63	Mitochondrial thioredoxin reductase; oxidative stress protection; with Glr1p maintains Trx3p redox status
YHR126C YML028W	YHR126C TSA1	1.47 1.46	Hypothetical protein Ubiquitous housekeeping thioredoxin peroxidase, reduces reactive oxygen, nitrogen and
YMR037C YPL059W	MSN2 GRX5	1.46 1.42	Transcriptional activator related to Msn4p; activated in stress conditions Mitochondrial hydroperoxide, superoxide-radical responsive oxidoreductase; iron-sulfur
YGR209C YNL259C	TRX2 ATX1	1.39 1.35	Cytoplasmic thioredoxin isoenzyme; protects cells against both oxidative and reductive stress Cytosolic copper metallochaperone; copper eventually inserted into Fet3p (high-affinity iron
YPL188W YER042W	POS5 MXR1	1.34 1.33	Mitochondrial NAD(H) kinase; required for the response to oxidative stress Reverses oxidation of methionine residues; involved in repair and resistance to oxidative
YFL033C	RIM15	1.28	stress Glucose-repressible protein kinase; signal transduction during cell proliferation in response to
YBL043W YER174C	ECM13 GRX4	1.21 1.19	Nonessential protein of unknown function Hydroperoxide, superoxide-radical responsive oxidoreductase; protection from oxidative
YBR216C	YBP1	1.17	Oxidation of transcription factor Yap1p, resulting in nuclear localization of Yap1p in response to stress
YNL331C	AAD14	1.15	Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role
YDR533C YPR065W XGR097W	HSP31 ROX1 ASK 10	1.12 1.11	Possible chaperone and cysteine protease with similarity to Hsp32p, Hsp33p, and Sno4p Heme-dependent repressor of hypoxic genes
YLR108C	YLR108C	1.03	stress Protein of unknown function: green fluorescent-fusion protein localizes to the nucleus: non-
YNL099C	OCA1	1.03	essential Putative protein tyrosine phosphatase: induces cell cycle arrest in response to oxidative DNA
YLL028W	TPO1	-1.04	damage Polyamine transporter; catalyzes uptake of polyamines at alkaline pH and excretion at acidic
YIL010W	DOT5	-1.08	pH Nuclear thiol peroxidase; functions as an alkyl-hydroperoxide reductase during post-diauxic
YCR021C YOL165C	HSP30 AAD15	-1.12 -1.15	growth Plasma membrane stress response protein; negatively regulates $H(+)$ -ATPase Pma1p Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological
YHR111W	UBA4	-1.16	role Urmylates thioredoxin peroxidase Ahp1p, suggesting a role of urmylation in oxidative stress
YPL202C	AFT2	-1.16	response Iron-regulated transcriptional activator, required for iron homeostasis and resistance to ovidative stress
YLR109W YJR155W	AHP1 AAD10	-1.21 -1.22	Thiol-specific peroxiredoxin, reduces hydroperoxides to protect against oxidative damage Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological
YHR053C	CUP1-1	-1.23	role Metallothionein, binds copper and mediates resistance to high concentrations of copper and cadmium

YHR055C CUP1-2 -1.26 Metalloblassetia, binds copper and mediates resistance to high concentrations of copper and continum YMR17W DDR48 -1.29 ABC transporter protein involved in multidrug resistance to singlet oxygen species YKR05C MR54 -1.31 Microhonfail into transporter, functions under low-iron conditions; may transport other YLR04C TRX1 -1.40 Cytoplasmic tiloredoxin isocnayme; protexts cells against both oxidative and reductive arress YML05C TRX1 -1.40 Cytoplasmic tiloredoxin isocnayme; protexts cells against both oxidative and reductive arress YML05C YNL13C -1.41 Cytoplasmic tiloredoxin isocnayme; protexts cells against both oxidative and transporter strates YML05C YNR10Z -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance to singlet oxidative arress YMR10Z YNL84G TLR44G YLR04G -1.53 YOL13C YOL13C -1.44 Cytooloci and microhomatin aptroxin function calibitation transporter; involved in transport and elocitation in signification in transporter; involved in transport and elocitation in transport and elocitation in transporter; involved in transport and elocitation in transporter; proposed voltative and nitrosative stress visual aptresport and supage visual aptroxin intresporter; involved in trans	Systematic name	Common name	Fold-change ^a	Saccharomyces Genome Database gene description (abbreviated)
YMR171W DDR 4 -1.26 DNA damage-responsive protein, induced in response to heat-shock to singlet oxygen species YKR052C MR54 -1.31 Mitochondrial irou transporter; functions under low-iron conditions; may transport other entition YLR032C MR54 -1.38 Cock-pr YLR043C TRX1 -1.40 Cytroplasmic thioredoxin isconzyme; protects cells against both oxidiatire and reflective areas YNL080C TRX1 -1.40 Cytroplasmic thioredoxin isconzyme; protects cells against both oxidiatire and reflective areas YNL080C YNR102C -1.48 Chaharacetrized ORF; alcohol dehydrogenase (NADP +) activity; biological process YNR102C YNR102C -1.53 Protein with a protein all role or eight anxious function; regulated by drug resistance transporter; involved in the adaptic glutathione YNR102C YNR102C -1.61 Protein or inknown function; activated along with genes involved in multidrug resistance transporter; involved in transport and cellular detoxfication YR1214C YLR46C -1.64 YLR46C YR1234C YUR134C -1.61 YLR46C YR1234C YR184 -1.62 YLR46C YR1814 -1.61 YLR46C	YHR055C	CUP1-2	-1.26	Metallothionein, binds copper and mediates resistance to high concentrations of copper and
YKR052C MRS4 -1.31 Mitochardial from transporter; functions under low-iron conditions; may transport other cations YDL030C PRM7 -1.38 Pherotome-regulated protein, predicted to have a transmembrane segment; regulated by Gradp YLR048C TKX1 -1.40 Cytoplasmic thioredoxin isoenzyme; protects cells agains both oxidative and reductive stress YML080C YNL134C -1.43 Catalyzes the final stop of synthesis, protective agains to dividative and reductive stress YMR102C YMR102C -1.48 Catalyzes the final stop of synthesis, protective agains to dividative and reductive stress YMR102C YNR140C -1.48 Catalyzes the final stop of synthesis, proteined for the dividative gravital dividatione ovidoreductase; reduces ovidized glutatione YDR140C YNR140C YNR140C YNR140C YOR13W YDR141 -1.53 Protein of anknown function; archivel in winkown function; regulated by drug resistance transporter; involved in transport and cellular deoxification ty PR0830 YOR13W YNR13 -1.64 Hyporhetical protein YDR198C GRX3 -1.82 Membrane ATribening casses transporter; involved in transport and cellular deoxification from oxidative and subarbin protein for unknown function, respective divolved in a membrane regulation metabolic pathway YPR123W YHR1 -1.95 Protein of unknown function; asses transporter; involved in transport and cellular deoxiditation fro	YMR173W YDR011W	DDR48 SNQ2	-1.26 -1.29	DNA damage-responsive protein, induced in response to heat-shock stress or DNA lesions ABC transporter protein involved in multidrug resistance and resistance to singlet oxygen
YDL039C PRM7 -1.38 Phenomous-regulated protein, predicted to have a transmembrane segment; regulated by Gen4p YLR048C TRX1 -1.40 Cytoplasmic hioredoxin iscenzym; protects cells agains both oxidarive and reductive stress YML088C YNL038C YNL34C -1.48 Uncharacterized ORF; alcohol dehydrogenase (NADP +) activity; biological process unhown YMR102C YMR102C -1.51 Protein with a potential role in outpart of but doing growth and using growth haves, required for the doing growth and using growth haves, required for the doing growth and using growth haves, required for the doing growth and using growth haves, required for the doing growth and using growth haves, required for the doing growth and using growth haves a stransmetry. Transporter: moubled in transport and cellulation of YUR34C YLR34C YLR148C -1.64 Hyporbetical protein of unknown function; regulated by drug resistance transcription factors YOR13W YBR3 -1.52 Nitric coide oxidoreditetase; flavohemoglobin; role in the oxiditive and nitrosative stress YOR13W YBR3 -1.82 Memora drug transporter; involved in a membrane regulated posting and yBR3 YPL39W YAR -2.09 Cytoplasmic protein propost of link 405 fibosandi suburit hiogenesis to adaption to oxiditive drug transporter; moleculative and stress transtress transporter; moleculative andi	YKR052C	MRS4	-1.31	Mitochondrial iron transporter; functions under low-iron conditions; may transport other
YIR043C TRX1 -1.40 Complexity biological process with the final step of erythroascorbic acid biosynthesis, protective against oxidative stress. YIR102C YIR124C YIR124C -1.48 Catalyzes the final step of erythroascorbic acid biosynthesis, protective against oxidative stress. YIR102C YIR102C -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance. YIR102C YIR102C -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance. YIR102C YIR102C -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance. YIR102C YIR14C -1.64 Hypothetical protein. YIR102C YIR03VC YHB1 -1.75 Nitric oxide oxidorothetass; flavohemoglobin; role in the oxidative and nitrosative stress response. YOR13SW YDR9 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification durange. YHR02SC YHB1 -1.57 Nitric oxide oxidorothetass; flavohemoglobin; role in the oxidative and nitrosative stress responses. YDR09SC YHB1 -1.58 YYR129W YAR1 -2.09 YDR09SC YHB1 -1.57 Nitric oxide oxidorothetass; flavohemoda	YDL039C	PRM7	-1.38	Pheromone-regulated protein, predicted to have a transmembrane segment; regulated by Gen4p
FML096C ALD1 -1.47 Cargar us man step of stylinolscolors and obsyliness, protective algains columner VNL134C YNL134C -1.48 Uncharacterized QRF; alcohol delydrogenase (NADP +) activity; biological process unknown VDR134C YML134C -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance TyDR34C YVL01WC GLR1 -1.53 Protein of unknown function; activated along with genes involved in multidrug resistance TyDR34C YUL34C YLR34C -1.64 Hypothetical protein foctos Function of unknown function; activated along with genes involved in transport and cellular detoxification response YOR03SC GRX3 -1.83 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification response YPR09SC YHB -1.95 Protein of unknown function; increased after osmotic shock; non-essential gene TyDL13W YML131W -1.13 Protein of unknown function; increased after osmotic, ionic, ioxidative, heat, manga YPL09W YAR1 -2.09 Cytoplasmic protein; of unknown function; increased after osmotic, ionic, ioxidative, heat, manga YPL131W YML131W -2.13 Patative protein of unknown function; increased after osmotic, ionic, ioxidative, heat, manga YPL131C OYE3 -2.38	YLR043C	TRX1	-1.40	Cytoplasmic thioredoxin isoenzyme; protects cells against both oxidative and reductive stress Catalyzes the final stars of anthropassochia acid bioauthoris, protective against oxidative
TAC134C 1.14 -1.45 Characterized ORY; accord acquiring ensigned ensigned in multicing presistance. VDR102C VVR104 -1.53 Protein with a potential role in cell survival pathways; required for the dinaxic growth shift. VDR346C SVF1 -1.53 Protein with a potential role in cell survival pathways; required for the dinaxic growth shift. VDR156C YUR346C -1.64 Hypothetical protein VDR157W PDR5 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification VDR158W PDR5 -1.82 Membrane ATP-binding cassette transporter; involved in a membrane regulation metabolic pathway VPL29W YAR1 -2.03 Cytoplasmic protein; protein Protein of unknown function; increased after cosmoic shock; non-essential gene damage VPL151W GR22 -2.13 Protein of unknown function; increased after cosmoic shock; non-essential gene from the regulation metabolic pathway is unknown function; increased after cosmoic shock; non-essential gene from transport and cellular detoxification VPL191C OYE3 -2.13 Protein of growth at low temperature VPL191W GR22 -2.13 Protein of growth at low temperature VPL105C FEB1 -2.17 Acyltransferase; major growth at low temperature <td>VNIL 124C</td> <td>ALOI VNU 124C</td> <td>-1.44</td> <td>stress</td>	VNIL 124C	ALOI VNU 124C	-1.44	stress
YMK10/2 YMK10/2 -1.51 Protein of unknown function; activated along with genes involved in multidrug resistance YPL/01W GLR1 -1.53 Protein with a potential role in cell survival pathways, required for the distustig exorth shift YPL/01W GLR1 -1.53 Protein with a potential role in cell survival pathways, required for the distustig exorth shift YPL/01W GLR1 -1.53 Protein with a potential role in cell survival pathways, required for the distustig exorth shift YPL/01W GLR1 -1.54 YPL/01W -1.54 YPL/01W -1.54 YPL/01W -1.55 YPL/01W -2.07 Cytoplawing protein; of unknown function; increased after osmotic shock; non-essential gene YOL151W YPL/13W -2.13 Putative protein of unknown function; increased after osmotic shock; non-essential gene YOL151W YPL/01W -2.13 Widdly conserved YADPH oxidoreductase; stress induced (osmotic, ionic, oxidative, heat, metals) YPL131W YPL131W -2.13 Widdly conserved XADPH oxidoreductase; stress induced usphysiological rol	INLI34C	YNLI34C	-1.48	unknown
VDR3ACC SVF1 -1.53 Protein with a potential role in cell survival pathways, could editative or worked glutatiline or worked glutatione or worked glutatiline or worked g	YMR102C	YMR102C	-1.51	Protein of unknown function; activated along with genes involved in multidrug resistance
YPL091W GLR1 -1.8 Cytosolic and mitochondrial glutathione oxidorductase; reduces oxidized glutathione YUR1346C YLR346C -1.64 Putative mitochondrial protein of nuknown function; regulated by drug resistance transcription factors YOL118C VOL118C -1.64 Hypothetical protein YOR234W YHB1 -1.75 Nitric oxide oxidoreductase; flavohemoglobin; role in the oxidative and nitrosative stress response YOR205C GRX3 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification YPR093C YHP -1.95 Prinzing unknown function prossibly involved in a membrane regulation metabolic pathway YPL239W YAR1 -2.09 Oxidative stress YUL151W GRE2 -2.15 NADPH-dependent methylg/yoal reductase; mays be involved in sterol metabolism YPL13V YPL13W -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YPL166C FAP7 -2.51 Essential NTPase required for small ribosome submit synthesis YLL08W URM1 -2.37 Putative argulated for small ribosome submit synthesis YLL060C GTT2 -2.51 Essential NTPase required for small ribosome submit synthesis	YDR346C	SVF1	-1.53	Protein with a potential role in cell survival pathways, required for the diauxic growth shift
YLR346C -1.61 Putative mitochondrial protein of unknown function; regulated by drug resistance transcription factors YOL118C YOL118C -1.64 Hypothetical protein YOR33W PDR5 -1.82 Niric oxide oxidereductase; flavohemoglobin; role in the oxidative and nitrosative stress responses YOR153W PDR5 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification YDR098C GRX3 -1.83 Hydroperoxide and superoxide-radical responsive oxidoreductase; protextion from oxidative damage. YIIR029C YIII9 -1.95 Protein of unknown function; increased after osmotic shock; non-essential gene oxidative stress YDL39W YAR1 -2.09 Oxidative stress YPL095C EEB1 -2.17 Achiransterase; major part of short-chain fatty acid ethyl ester production during type. YPL101C OYE3 -2.39 Protein required for srowth at low temperature YDL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis YLL30W URM1 -2.57 Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growth YDL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis <td>YPL091W</td> <td>GLR1</td> <td>-1.58</td> <td>Cytosolic and mitochondrial glutathione oxidoreductase; reduces oxidized glutathione</td>	YPL091W	GLR1	-1.58	Cytosolic and mitochondrial glutathione oxidoreductase; reduces oxidized glutathione
YOL118C YOL118C -1.64 Hypothetical protein YGR234W YHB -1.65 Niric oxide oxideroductase; flavohemoglobin; role in the oxidative and nitrosative stress responses YOR153W PDR5 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification YDR098C GRX3 -1.83 Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage YHR027C YH9 -1.95 Protein of unknown function; increased after osmotic shock; non-senstrial gene oxidarive stress YDL131W YML131W -2.13 Putative protein of unknown function; increased after osmotic shock; non-senstrial gene oxidarive stress YDL151W GRE2 -2.15 NADPH-dependent methylglyoxal reductase; may be involved in sterol metabolism YPL199SC EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL109W AAD3 -2.40 Putative aryl-acholol dehydrogenase; mutational analysis has not yet revealed a physiological rol YDL066C FAP7 -2.51 Essential INTPase required for small ribosome subunit synthesis YLL060C GTI2 -2.75 Gittathindice brotsmic increase and opper prior to uptake; induced by oidants, cadmium, and merearuy	YLR346C	YLR346C	-1.61	Putative mitochondrial protein of unknown function; regulated by drug resistance tran- scription factors
YGR234W YHB1 -1.75 Nitric oxide oxidoreductase; flavohemoglobin; role in the oxidative and nitrosative stress responses YGR133W PDR5 -1.82 Membrane ATP-binding cassette transporter; involved in transport and cellular detoxification from oxidative damage YHR039C YHR0 -1.93 Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage YHR039C YHR0 -1.95 Protein of unknown function possibly involved in a membrane regulation metabolic pathway YPL239W YAR1 -2.09 Cytoplasmic protein; proposed to link 405 ribosomal subunit biogenesis to adaption to oxiditive stress YML131W YML131W -2.13 Putative protein of unknown function; increased after osmotic, ionic, oxidative, heat, metabsi YPL095C EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL17IC OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YRL131W LTV1 -2.39 Protein required for small ribosome subunit synthesis YLL068C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis YLL016C GTT2 -2.75 Glutathione St-transferase capable of homodimerization; functional overlap wit	YOL118C	YOL118C	-1.64	Hypothetical protein
YOR133W PDR5 -1.82 Hembrane ATP-binding cassette transporter; involved in transport and cellular detoxification YDR098C GRX3 -1.83 Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative function possibly involved in a membrane regulation metabolic pathway YIR039C YHIP -1.95 Protein of unknown function; increased after osmotic shock; non-essential gene YML131W YML131W -2.13 Putative protein of unknown function; increased after osmotic, ionic, oxidative, heat, metabolic YPL057C EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YPL065C EAD1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YPL061C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis Y1L060C GTT2 -2.75 Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2p Y1L010C GSH1 -2.95 Gritalitones S-transferase capa	YGR234W	YHB1	-1.75	Nitric oxide oxidoreductase; flavohemoglobin; role in the oxidative and nitrosative stress
YDR098C GRX3 -1.83 Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage YHR029C YHI9 -1.95 Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage YHL23W YARI -2.09 Cytoplasmic protein; proposed to link 405 mbosomal subunit biogenesis to adaption to oxidative stress YDL15IW GRE2 -2.13 Putative protein of unknown function; increased after osmotic shock; non-essential gene YPL29SC EEB1 -2.17 Acyttransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL095C FEB1 -2.17 Acyttransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL095C FAP7 -2.31 Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role YPL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis YL1208W URM1 -2.57 Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growth YL216C GTT2 -2.75 Glutathiones F-transferase: capable of homodimerization; functional overlap with Gtt2p, Grx, Grx, P., Grx2p YL106C GTT2 -2.52 Catalyzes the first step of	YOR153W	PDR 5	-1.82	Membrane ATP-binding cassette transporter: involved in transport and cellular detoxification
YHR029C YH19 -1.05 Protein of unknown function possibly involved in a membrane regulation metabolic pathway YPL239W YAR1 -2.09 Cytoplasmic protein; proposed to link 40S ribosomal subunit biogenesis to adaption to oxidative stress YML131W YML131W -2.13 Putative protein of unknown function; increased after osmotic shock; non-essential gene YNL95C EEB1 -2.17 Acyliransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL095C EEB1 -2.17 Acyliransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL095C EEB1 -2.17 Acyliransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL095C EEB1 -2.17 McWide conserved NADPH oxidoreductase; may be involved in sterol metabolism YRL131W LTV1 -2.39 Protein required for growth at low temperature YUC005C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis Y1L06W URM1 -2.57 Elsential NTPase required for small ribosome subunit synthesis YL1010C GSH1 -2.95 Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuru Y1L101V <	YDR098C	GRX3	-1.83	Hydroperoxide and superoxide-radical responsive oxidoreductase; protection from oxidative damage
YPL239W YAR1 -2.09 Cytoplasmic protein; proposed to link 40S ribosomal subunit biogenesis to adaption to oxidative stress YML131W YML131W -2.13 Putative protein of unknown function; increased after osmotic shock; non-essential gene YDL151W GRE2 -2.15 Putative protein of unknown function; increased after osmotic shock; non-essential gene YPL095C EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; stress induced (osmotic, iomic, oxidative, heat, metals) YRL143W LTV1 -2.39 Protein required for growth at low temperature YCR107W AAD3 -2.40 Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role YDL106C FAP7 -2.51 Essential NTPase required for small ribosome submit synthesis YIL008W URM1 -2.77 Glutathione Stransferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2p YJL101C GSH1 -2.95 Catalyzes the first step of glutathione biosynthesis; induced by oxidant, cadmium, and mercury YUR214W FRE1 -2.98 Ferric and cupric reductase; reduces iron and copoper prior to uptake; induced by low copper, i	YHR029C	YHI9	-1.95	Protein of unknown function possibly involved in a membrane regulation metabolic pathway
YML131W YML131W QGR2-2.13 -2.15Putative protein of unknown function; increased after osmotic shock; non-essential gene NADPH-dependent methylglyoxal reductase; stress induced (osmotic, ionic, oxidative, heat, metals)YPL095CEEB1 -2.17-2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation PU171COYE3 YCL107W-2.38Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YCL107WYAL143W YLL06WEAP7 -2.51-2.40 Essential NTPase required for smult allow temperature roleYDL166C YLL06WFAP7 -2.51-2.51Essential NTPase required for smult inbosome subunit synthesis role-2.77 Ubiquitin-like protein; molecular function of Urm1p pathway is unknow; required for normal growthYLL060C YLL060CGTT2 -2.75-2.76 Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL01C YDL182WGSH1 -2.95-2.98 Catalyzes the first step of glutathione biosynthesis; induced by low copner, iron levelsYDR216C YDR22C TSUR2W-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR22C AIF1 -3.42YDR33WTRR1 -4.05-3.44 Catalyzes the formation of L-argininosuciante in the arginine biosynthesis pathway YOR26C AIF1 -3.42YDR33WTRR1 -4.05-4.05 Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress YTR074CYDR33WTRR1 -4.05-4.05 Cytoplasmic thioredoxin reductase; protects cells against both oxidative and	YPL239W	YAR1	-2.09	Cytoplasmic protein; proposed to link 40S ribosomal subunit biogenesis to adaption to oxidative stress
YOL151W GRE2 -2.15 NADPH-dependent methylglyoxal reductase; stress induced (osmotic, ionic, oxidative, heat, metals) YPL095C EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; mutational analysis has not yet revealed a physiological role YPL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis YIL008W URM1 -2.57 Ubiquitin-like protein; molecular function of Urn1p pathway is unknown; required for normal growth YNL231C PDR16 -2.71 Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesis YLL060C GTT2 -2.75 Glutathione S-transferase capable of homodimerization; functional overlap with Gt2p, Grx1p, Grx2p YLL101C GSH1 -2.95 Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercury YRL2312W FRE1 -2.98 Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levels YDL182W LYS20 -3.20 Homocitrate synthase isozyme; ca	YML131W	YML131W	-2.13	Putative protein of unknown function: increased after osmotic shock: non-essential gene
YPL095C EEB1 -2.17 Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YPL171C OYE3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YRL143W LTV1 -2.39 Protein required for growth at low temperature YDL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis Y1L008W URM1 -2.57 Ubiguitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growth YNL231C PDR16 -2.71 Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesis Y1L060C GTT2 -2.75 Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p Y1L01C GSH1 -2.98 Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levels Y0L182W LYS20 -3.20 Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway Y0R026C ISU2 -3.39 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism Y1R179W	YOL151W	GRE2	-2.15	NADPH-dependent methylglyoxal reductase; stress induced (osmotic, ionic, oxidative, heat, metale)
YPL17C OY E3 -2.38 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YKL143W LTV1 -2.39 Protein required for growth at low temperature YCR107W AAD3 -2.40 Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role YDL166C FAP7 -2.51 Essential NTPase required for small ribosome subunit synthesis Y1L008W URM1 -2.57 Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growth YL1600C GTT2 -2.75 Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2p Y1L101C GSH1 -2.95 Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercury YDL182W FRE1 -2.98 Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levels YDR122C ISU2 -3.20 Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR22C ISU2 -3.29 Conserved MADPH oxidoreductase; may be involved in sterol metabolism YHR179W OYE2 -3.39 Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YDL058W	YPL095C	EEB1	-2.17	Acyltransferase; major part of short-chain fatty acid ethyl ester production during fermentation
YKL143W YCR107WLTV1-2.39 AAD3Protein required for growth at low temperatureYCR107WAAD3-2.40Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYDL166CFAP7-2.51Essential NTPase required for small ribosome subunit synthesisYIL008WURM1-2.57Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for mormal growthYNL231CPDR16-2.71Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesisYLL060CGTT2-2.75Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercury morelyYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR26CYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism YNR074CYHR179WOYE2-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway YR333WYDR333WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress YLL670KYLL67CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative and reductive stress YEN333W	YPL171C	OYE3	-2.38	Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism
YCR107WAAD3-2.40Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYDL166CFAP7-2.51Essential NTPase required for small ribosome subunit synthesisYIL008WURM1-2.57Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growthYNL231CPDR16-2.71Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesisYLL060CGTT2-2.75Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYLL01CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercury iron levelsYDL182WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR25CYDL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway tyreproteinsYDL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway tyreprotein synthesisYDL166CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative and reductive stress tressYPL057CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response tyreprotein synthesi envices and peroxides during oxidative stressYPL057CAAD6-6.74Putative aryl-alcohol dehy	YKL143W	LTV1	-2.39	Protein required for growth at low temperature
YDL166CFAP7-2.51Esential NTPase required for small ribosome subunit synthesisY1L008WURM1-2.57Ubiquitin-like protein; molecular function of Urm1p pathway is unknow; required for normal growthYNL231CPDR16-2.71Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesisYLL060CGTT2-2.75Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuryYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathwayYOR26CISU2-3.29Conserved mitochondrial matrix proteir; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolismYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathwayYDL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYHR183WGND1-3.47Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYBL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYHR183WGND1-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidat	YCR107W	AAD3	-2.40	Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role
YIL008WURM1-2.57Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growthYNL231CPDR16-2.71Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid synthesisYLL060CGTT2-2.75Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuryYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR226CYBU179WOYE2-3.39Widely conserved Michondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYDL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDL05CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; protects cells from hydroperoxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde tolerance<	YDL166C	FAP7	-2.51	Essential NTPase required for small ribosome subunit synthesis
YNL231CPDR16-2.71Information grownYNL260CGTT2-2.75Glutathionesitol transfer protein; controls levels of various lipids, may regulate lipid synthesisYLL060CGTT2-2.75Glutathione Stransferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuryYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway proteinsYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway transfer stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress stressYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response tressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL32XAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YIL008W	URM1	-2.57	Ubiquitin-like protein; molecular function of Urm1p pathway is unknown; required for normal growth
YLL060CGTT2-2.75Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, Grx2pYJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuryYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway YOR226CYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway ProteinsYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYDL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway YHR183WYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress YL1057CYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; involved in the oxidative stress or aldehyde toleranceYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYML2182AAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YNL231C	PDR16	-2.71	Phosphatidylinositol transfer protein; controls levels of various lipids, may regulate lipid
YJL101CGSH1-2.95Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and mercuryYLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway POR226CYDR226CISU2-3.29Conserved mitochondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway PHR183WYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress stressYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide yrlative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYEL23CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YLL060C	GTT2	-2.75	Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p,
YLR214WFRE1-2.98Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper, iron levelsYDL182WLYS20-3.20Homocitrate synthase isozyme; catalyzes first step in the lysine biosynthesis pathway york226CYB226CISU2-3.29Conserved mitochondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolism york206CYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway ytressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress ytressYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide ydehyde toleranceYDL232CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YJL101C	GSH1	-2.95	Catalyzes the first step of glutathione biosynthesis; induced by oxidants, cadmium, and
YDL182WLYS20-3.20Homocirate synthase isozyme; catalyzes first step in the lysine biosynthesis pathwayYOR226CISU2-3.29Conserved mitochondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolismYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway tressYBR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress yIL167WYDL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YLR214W	FRE1	-2.98	Ferric and cupric reductase; reduces iron and copper prior to uptake; induced by low copper,
YDE122WE1320-3.20Homodurate syntase isozyme; catalyzes first step in the tysine biosynthesis pathwayYOR226CISU2-3.29Conserved mitochondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur proteinsYHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolismYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathwayYHR183WGND1-3.47Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	VDI 102W	L MC20	2.20	Iron levels
YHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolismYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYIL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YOR226C	ISU2	-3.20 -3.29	Conserved mitochondrial matrix protein; synthesis of mitochondrial and cytosolic iron-sulfur
YHR179WOYE2-3.39Widely conserved NADPH oxidoreductase; may be involved in sterol metabolismYNR074CAIF1-3.42Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuliYOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathway Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stress 	VIID 170W	OVE2	2.20	proteins
YOL058WARG1-3.44Catalyzes the formation of L-argininosuccinate in the arginine biosynthesis pathwayYHR183WGND1-3.47Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYIL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YNR074C	AIF1	-3.39 -3.42	Midely conserved NADPH oxidoreductase; may be involved in sterol metabolism Mitochondrial cell death effector that translocates to the nucleus in response to apoptotic stimuli
YHR183WGND1-3.44Catalyzes the formation of L-argininosticenate in the arginine biosynthesis pathwayYHR183WGND1-3.47Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative stressYDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYIL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	VOI 050W	ADCI	3 11	summi Catalyzes the formation of L arginingspagingte in the argining higgs these notherest
YDR353WTRR1-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYIL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxideYMR318CADH6-7.67NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YHR183W	GND1	-3.44	Regenerates NADPH in the pentose phosphate pathway; required for adaptation to oxidative
IDK353WIKKI-4.05Cytoplasmic thioredoxin reductase; protects cells against both oxidative and reductive stressYIL167WSDL1-4.47Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxideYMR318CADH6-7.67NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	VDD252W		1.05	Suress Contambanda da la contra da da contra da
Y1L10/WSDL1-4.4/Open reading frame, unlikely to produce a functional protein in S288CYFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxideYMR318CADH6-7.67NADPH-dependent alcohol dehydrogenase; involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	1 DK355W		-4.05	Cytopiasmic thioredoxin reductase; protects cells against both oxidative and reductive stress
YFL056CAAD6-5.55Putative aryl-alcohol dehydrogenase; involved in the oxidative stress responseYBR244WGPX2-5.68Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YIL16/W	SDLI	-4.4/	Open reading frame, unlikely to produce a functional protein in S288C
Y BK244WGPX2-5.08Glutathione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stressYFL057CAAD16-6.74Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological roleYML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YFLUS6C	AAD6 CDV2	-5.55	rutative aryi-aiconoi denydrogenase; involved in the oxidative stress response
YFL057C AAD16 -6.74 Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role YML116W ATR1 -7.41 Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide YMR318C ADH6 -7.67 NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde tolerance YDL243C AAD4 -7.91 Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	Y BR244W	GPX2	-5.68	Gutatione peroxidase; protects cells from hydroperoxides and peroxides during oxidative stress
YML116WATR1-7.41Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxideYMR318CADH6-7.67NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YFL057C	AAD16	-6.74	Putative aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role
YMR318CADH6-7.67NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde toleranceYDL243CAAD4-7.91Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YML116W	ATR1	-7.41	Multidrug efflux pump; required for resistance to aminotriazole, 4-nitroquinoline-N-oxide
YDL243C AAD4 -7.91 Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response	YMR318C	ADH6	-7.67	NADPH-dependent alcohol dehydrogenase; possibly involved in fusel alcohol synthesis or aldehyde tolerance
	YDL243C	AAD4	-7.91	Putative aryl-alcohol dehydrogenase; involved in the oxidative stress response

^aEach of these genes were significantly differentially expressed with a *P*-value of $\leq 10^{-4}$, determined using Rosetta Resolver (see Materials and Methods section).

other byproducts accumulated during the fermentive stage of growth, before entering the stationary phase of growth.

Oxidative phosphorylation, which is dependent on mitochondrial activity and oxygen metabolism, provides the most efficient means of energy production (19,20). However, a deleterious consequence of oxidative phosphorylation is the production of reactive oxygen species in the mitochondrion—including the superoxide anion, hydrogen peroxide (H_2O_2) and the hydroxyl radical that must be detoxified to minimize damage to nucleic acids, proteins, carbohydrates and lipids (21). The superoxide anion radical is reduced to H_2O_2 by superoxide dismutases (SOD), and further reduced to water by the antioxidant glutathione (GSH) and the enzymatic activity of catalases and peroxidases (21,22).

Cells switched to growth dependent on mitochondrial activity-the utilization of glycerol via oxidative phosphorylation-experience elevated levels of reactive oxygen species, evidenced by the increased nuclear mutational rates in cells grown in YPG versus YPD (2), a 28-fold increase in oxidative damage to mitochondrial proteins (2), and the changes in gene expression observed in this study, facilitated using Cytoscape and our yeast interactome. The genes that were most significantly affected by the switch from growth on glucose to growth on glycerol were identified using our interactome and the Cytoscape jActiveModules plugin (Figure 2; Table 1). As shown in Figure 2, transcription factors directly associated with the regulation of these genes include the stress response transcription factors Yap1 (required for oxidative stress tolerance), Rpn4 (stimulates expression of proteasome genes), Cad1 (multiple stress responses), Arr1 (resistance to arsenic compounds), Cat8 (derepression of genes following the diauxic shift), Sok2 (signal transduction), Stp2 (external amino acid permease) and Met4 (sulfur amino acid pathway). The involvement of several of these transcription factors in regulating the cellular response to the diauxic shift (e.g. Yap1) is not surprising given the increases in oxidative phosphorylation and reactive oxygen species as a consequence of increased mitochondrial function. Transcription factor Arr1 (Yap8), normally associated with the transcription of genes involved in resistance to arsenic compounds, appeared to directly coregulate the expression of 39 of the 95 genes shown in Figure 2, including up-regulated genes associated with the β -oxidation of fatty acids, carbohydrate metabolism and the TCA cycle, and the response to diauxic shift, suggesting a substantial role for this transcription factor in diauxic-shifted cells.

The complex regulatory nature of gene expression in *S. cerevisiae* is readily apparent from the interaction data displayed in Figures 1–3. It appears that transcription factors in *S. cerevisiae* form a highly interconnected self-regulatory subnetwork, while additionally regulating at least 5734 additional genes (our interactome: data not shown), indicating that substantial redundancy exists among the regulation and utilization of metabolic pathways. These cells may thus be able to respond quickly to changes in their external (e.g. adverse growth conditions) or internal (e.g. nonlethal mutations) environment by adjusting the regulation of their cellular metabolism via

modest changes in gene expression involving hundreds or thousands of genes.

The transcription factors present in our yeast interactome appear to regulate most, but not all of the genes present in this interactome. Subtracting the 168 transcription factors and their regulated genes from the yeast interactome reveals that 286 of the 6188 genes present in the interactome (4.6%) are currently not associated with any transcription factor (data not shown). These genes, ranging from 3.1-fold up-regulated (TAM41) to 6.2-fold down-regulated (PAM18), passed through the SGD GO Slim Mapper, are variously associated with unknown biological processes (58 of 286 genes; 20.3%), transport (53/286; 18.5%), transcription (16/286; 5.6%), the cell cycle (11/286 genes; 3.8%), signal transduction (10/286;3.5%) and amino acid metabolism (3/286 genes; 1.0%). Sixty-four of these genes (64/286; 22.4%) are annotated by SGD as being associated with the mitochondrion.

There is increasing interest regarding the application of bioinformatics and systems biology to the study of organisms and their regulatory mechanisms and metabolic profiles (23–28). The data provided in this study suggest that most genes are regulated in a highly complex manner by more than one transcription factor, and that bioinformatic tools such as Cytoscape-in conjunction with a robust interactome-may provide a useful framework for additional avenues of investigation. For example, by noting the transcription factors associated with specific groups of genes that are differentially expressed, the effect of deleting these transcription factors may be determined, at least partly. Finally, by applying methods similar to those used in the construction of the interactome described in this article, additional types of interaction data-for example those associated with protein kinases and their targets-can be readily incorporated.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors would like to thank Astrid Haugen (NIEHS) and Leroy Worth (NIEHS) for critical reading of the article, and Astrid Haugen for discussions regarding the use of Cytoscape.

FUNDING

National Institutes of Health, National Institute of Environmental Health Sciences (Z01-ES065078 to W.C.C.); US Army Research Office (W991NF-04-D-0001 and DAAG55-98-D-0002 to G.R.S.); National Research Council Research Associateship Award. Funding for open access charge: Intramural Research Program, National Institutes of Health, National Institute of Environmental Health Sciences.

Conflict of interest statement. None declared.

REFERENCES

- Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.*, 13, 2498–2504.
- Strand, M.K., Stuart, G.R., Longley, M.J., Graziewicz, M.A., Dominick, O.C. and Copeland, W.C. (2003) *POS5* gene of *Saccharomyces cerevisiae* encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. *Eukaryot. Cell*, 2, 809–820.
- Stuart,G.A., Humble,M.M., Strand,M.K. and Copeland,W.C. (2009) Transcriptional response to mitochondrial NADH kinase deficiency in *Saccharomyces cerevisiae*. *Mitochondrion*, In press
- 4. Spencer, F., Hugerat, Y., Simchen, G., Hurko, O., Connelly, C. and Hieter, P. (1994) Yeast *kar1* mutants provide an effective method for YAC transfer to new hosts. *Genomics*, **22**, 118–126.
- Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Freitas, A.T., Oliveira, A.L. and Sá-Correia, I. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in *Saccharomyces cerevisiae*. *Nucleic Acids Res.*, 34, D446–D451.
- Bonander, N., Ferndahl, C., Mostad, P., Wilks, M.D.B., Chang, C., Showe, L., Gustafsson, L., Larsson, C. and Bill, R.M. (2008) Transcriptome analysis of a respiratory *Saccharomyces cerevisiae* strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. *BMC Genomics*, 9, 365.
- 7. DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. *Science*, **278**, 680–686.
- Maris,A.F., Assumpção,A.L.K., Bonatto,D., Brendel,M. and Henriques,J.A.P. (2001) Diauxic shift-induced stress resistance against hydroperoxides in *Saccharomyces cerevisiae* is not an adaptive stress response and does not depend on functional mitochondria. *Curr. Genet.*, **39**, 137–149.
- Kuhn,K.M., DeRisi,J.L., Brown,P.O. and Sarnow,P. (2001) Global and specific translational regulation in the genomic response of *Saccharomyces cerevisiae* to a rapid transfer from a fermentable to a nonfermentable carbon source. *Mol. Cell Biol.*, 21, 916–927.
- Young, E.T., Dombek, K.M., Tachibana, C. and Ideker, T. (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. *J. Biol. Chem.*, 278, 26146–26158.
- Ohlmeier, S., Kastaniotis, A.J., Hiltunen, J.K. and Bergmann, U. (2004) The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J. Biol. Chem., 279, 3956–3979.
- Xie,X., Wilkinson,H.H., Correa,A., Lewis,Z.A., Bell-Pedersen,D. and Ebbole,D.J. (2004) Transcriptional response to glucose starvation and functional analysis of a glucose transporter of *Neurospora crassa. Fungal Genet. Biol.*, 41, 1104–1119.

- 13. Stuart, G.R., Santos, J.H., Strand, M.K., Van Houten, B. and Copeland, W.C. (2006) Mitochondrial and nuclear DNA defects in *Saccharomyces cerevisiae* with mutations in DNA polymerase γ associated with progressive external ophthalmoplegia. *Hum. Mol. Genet.*, **15**, 363–374.
- 14. Graziewicz, M.A., Longley, M.J. and Copeland, W.C. (2006) DNA polymerase γ in mitochondrial DNA replication and repair. *Chem. Rev.*, **106**, 383–405.
- 15. Chan,S.S.L. and Copeland,W.C. (2008) DNA polymerase gamma and mitochondrial disease: Understanding the consequence of *POLG* mutations. *Biochimica et Biophysica Acta*, In press [29 October, 2008, Epub ahead of print]
- Strand, M.K. and Copeland, W.C. (2002) Measuring mtDNA mutation rates in Saccharomyces cerevisiae using the mtArg8 assay, *Methods Mol. Biol.*, 197, 151–157.
- Lagunas, R. (1976) Energy metabolism of Saccharomyces cerevisiae discrepancy between ATP balance and known metabolic functions. *Biochim. Biophys. Acta*, 440, 661–674.
- Rosenfeld, E. and Beauvoit, B. (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by *Saccharomyces cerevisiae*. Yeast, 20, 1115–1144.
- Lin,S.-J., Kaeberlein,M., Andalis,A.A., Sturtz,L.A., Defossez,P.-A., Culotta,V.C., Fink,G.R. and Guarente,L. (2002) Calorie restriction extends *Saccharomyces cerevisiae* lifespan by increasing respiration. *Nature*, **418**, 344–348.
- Johnston, M. and Kim, J.-H. (2005) Glucose as a hormone: receptormediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem. Soc. Trans., 33, 247–252.
- 21. Jackson, M.J., Papa, S., Bolaños, J., Bruckdorfer, R., Carlsen, H., Elliott, R.M., Flier, J., Griffiths, H.R., Heales, S., Holst, B. *et al.* (2002) Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. *Mol. Aspects Med.*, 23, 209–285.
- 22. Grant, C.M., Perrone, G. and Dawes, I.W. (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast *Saccharomyces cerevisiae*. *Biochem. Biophys. Res. Commun.*, 253, 893–898.
- 23. Futcher, B. (2002) Transcriptional regulatory networks and the yeast cell cycle. *Curr. Opin. Cell Biol.*, 14, 676–683.
- 24. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I. et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799–804.
- Begley, T.J. and Samson, L.D. (2004) Network responses to DNA damaging agents. DNA Repair, 3, 1123–1132.
- 26. Tong,A.H.Y., Lesage,G., Bader,G.D., Ding,H., Xu,H., Xin,X., Young,J., Berriz,G.F., Brost,R.L., Chang,M. *et al.* (2004) Global mapping of the yeast genetic interaction network. *Science*, **303**, 808–813.
- 27. Wu,W.-S., Li,W.-H. and Chen,B.-S. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. *BMC Bioinformatics*, **7**, 421.
- 28. Boone, C., Bussey, H. and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. *Nat. Rev. Genet*, **8**, 437–449.